学术报告-Ming Mei

发布人:
责任人:
点击数:
更新时间:
2018-01-18 12:04:00

学术报告

    题      目:Euler-Poisson equations of semiconductor model with sonic boundary

报  告  人:Ming Mei 教授  (邀请人:黄锐)

                       Champlain College& McGill University, Canada


时      间:2018-01-18 16:00--17:00

地      点:学院401

报告人简介:

        梅茗是加拿大Champlain学院和McGill大学教授,吉林省“长白山学者”特聘教授,东北师范大学"东师学者"讲座教授,主要研究领域为非线性偏微分方程,多数研究工作发表在SIAM和JDE等杂志上,近年来主持了5项加拿大自然科学基金。任Applicable Analysis,International Journal of Numerical Analysis and Modeling等4个SCI杂志编委。


摘      要:

   In this talk, we study the well-posedness/ill-posedness and regularity of stationary solutions to the hydrodynamic model of semiconductors represented by Euler-Poisson equations with sonic boundary. When the doping profile is subsonic or supersonic, we prove that, the steady-state equations with sonic boundary possess a unique interior subsonic solution, and at least one interior supersonic solution, and infinitely many transonic shock solutions if the relaxation time is large, and infinity many C^1 smooth
transonic solutions if the relaxation time is small.