学术报告-苏之栩

发布人:
责任人:
点击数:
更新时间:
2018-06-04 09:06:00

学术报告

题      目:Manifold realization of prescribed Betti numbers


报  告  人:苏之栩  讲师  (邀请人:赵浩)

                            Indiana University


时      间:2018-06-04 15:00--16:00

地      点:学院401

报告人简介:

       苏之栩博士2009年于印第安纳大学(Indiana University)取得数学博士学位。毕业后先后任教于罗斯-霍曼理工学院(Rose-Hulman Institute of Technology), 加州大学尔湾分校(University of California, Irvine), 现任教于印第安纳大学。她的研究方向为几何拓扑,主要工作有:实现特定有理系数上同调环的高维流形的存在性问题. 相关结论发表于拓扑专业领域顶尖期刊。


摘      要:

       Prescribing a sequence of Betti numbers, is there any closed manifold realizing the algebraic data? We study the most basic nontrivial case where only b_0=b_n=b_{2n}=1, more specifically, whether there is manifold (above dimension 16) realizing the rational cohomology ring Q[x]/(x^3). Rational surgery reduces the problem to find Pontryagin numbers which satisfy certain integrality conditions, we confirm existence of the desired manifold in three higher dimensions and nonexistence in most others. Part of the work is
joint with Jim Fowler and Lee Kennard.