学术报告-李斯

发布人:
责任人:
点击数:
更新时间:
2018-10-12 08:47:00

学术报告

题      目:A Higher-Order Polynomial Method for SPECT Reconstruction


报  告  人:李斯     (邀请人: 叶颀)

                                 中山大学


时      间:2018-10-12 10:00--11:00

地      点:学院401

报告人简介:

        2008年和2013年分别获得中山大学信息与计算科学学士学位和计算数学博士学位,期间自2010年11月至2012年3月访问美国纽约州立大学上州医科大学(SUNY Upstate)放射系。尔后至2015年10月于中山大学数学与计算科学学院从事博士后研究工作,2015年11月至2018年6月于中山大学数据科学与计算机学院任特聘研究员。主要研究方向为医学影像重建、最优化理论与算法、反问题与积分方程。获美国专利授权1件,主持国家自然科学基金青年基金1项,参与国家重点研发计划高性能计算重点专项子课题1项,发表学术论文十来篇,曾获广东省计算数学优秀青年论文奖一等奖。



摘      要:

       Existing single-photon emission computed tomography (SPECT) reconstruction methods are most based on discrete models that may be viewed as piecewise constant approximations of certain continuous data acquisition process. Due to low accuracy order of piecewise constant approximations, traditional discrete models introduce irreducible model errors which are a bottleneck of the quality improvement of reconstructed images in clinical applications. To overcome this drawback, we develop a higher-order polynomial method for SPECT reconstruction. Specifically, we represent the data acquisition of SPECT imaging by using an integral equation model, approximate the solution of the underlying integral equation by higher-order piecewise polynomials leading to a new discrete system and introduce two novel regularizers for the system, by exploring the a priori knowledge of the radiotracer distribution, suitable for the approximation.































































上一篇:学术报告-江颖 下一篇:学术报告-周超