学术报告-黄聪明

发布人:
责任人:
点击数:
更新时间:
2019-04-25 16:34:00

学术报告

题      目:HIGH-PERFORMANCE COMPUTING FOR THREE DIMENSIONAL MAXWELL’S EQUATION ARISING FROM PHOTONIC CRYSTALS


 

报  告  人:黄聪明  教授   (邀请人:叶颀  )

                              台湾师范大学


时      间:2019-04-25 10:30--11:30

地      点:学院401

报告人简介:

       黄聪明教授于1994年获得台湾清华大学应用数学博士。现任台湾师范大学数学系教授,其研究专长领域是科学计算与数值分析。黄教授在SIAM系列刊物,J. Comp. Physics等国际知名学术期刊已发布学术论文50多篇,着重于矩阵方程的保结构算法和大规模矩阵特征值问题的快数求解等方面的研究。

 

摘      要:

        The numerical simulation of the band structure of three-dimensional photonic crystals leads to large-scale generalized eigenvalue problems (GEPs). Due to a high dimensional subspace associated with the eigenvalue zeros, it is very challenging to solve the GEP. In this talk, we focus on proposing a highperformance computing method to solve GEP for all fourteen Bravais lattices. For each lattice, we derive the explicit matrix form of the discrete double-curl operator by using Yee’s scheme and classify all the matrices into four general types. The eigen-decompositions of these four general matrices are then derived. Based on these eigen-decompositions, the nullspace-free method is applied to exclude the zero eigenvalues from the associated generalized eigenvalue problem. Applying these theoretical results, a high-performance computing package FAME (Fast Algorithm for Maxwell’s Equations) with GPU acceleration is proposed to find the target eigenpairs.