学术报告
题 目: On graphs with eigenvectors entries in {1,-1}
报 告 人:刘慧清 教授 (邀请人:尤利华 )
湖北大学
时 间:2022-10-21 10:30-12:30
腾 讯 会 议:588-915-210
报告人简介:
刘慧清,女,2004年博士毕业于中科院数学与系统科学研究院,同年获理学博士学位,2016年3月-2017年3月受国家留学基金委资助在美国佐治亚州立大学从事访问交流研究工作。自2004年以来,先后执教于南开大学、湖北大学,现为湖北大学数学与统计学学院教授/博士生导师。目前的主要研究兴趣集中在图和网络的结构性质、图谱理论及其应用上。发表学术论文80余篇。主持国家自然科学基金面上项目3项,参与承担国家自然科学基金项目5项。
摘 要:
Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of the degrees of a graph G, respectively. In 2019, Liu, Lai and Das defined the graph matrix kD(G) + A(G), which is a merger between the adjacency, Laplacian, and signless Laplacian matrices of graphs. Herbert Wilf in1986 asked what kind of graphs have an eigenvector with entries formed only by 1 and -1. Recently, Wilf's problem for the adjacency, Laplacian, and signless Laplacian matrices of a graph received much attention. In this talk, we will give a generalized result for all these existed results, and answer Wilf's problem for kD(G) + A(G).