学术报告-刘瑞芳


学术报告


题      目:A spectral Erd\H{o}s-P\'{o}sa Theorem

报  告  人:刘瑞芳   教授  (邀请人:尤利华 )

                                 郑州大学


时      间:2022-10-21 18:30-20:30


腾 讯 会 议:588-915-210


报告人简介:

       刘瑞芳,郑州大学数学与统计学院教授,博士生导师。2010年博士毕业于华东师范大学。河南省教育厅学术技术带头人,河南省优青基金获得者,河南省优硕论文指导教师。中国工业与应用数学学会图论组合及应用专业委员会委员,河南省运筹学会常务理事。主要从事图谱理论、谱极值图论的研究工作。在《Electron. J. Combin.》、《Adv. Appl. Math.》、《Discrete Math.》、《Discrete Appl. Math.》、《Linear Algebra Appl.》等图论主流期刊发表SCI学术论文40余篇。主持国家自然科学基金项目2项,河南省优青基金1项,中国博士后特别资助1项。曾在美国西弗吉尼亚大学数学系和香港浸会大学数学系进行学术访问。

摘      要:

       A set of cycles is called independent if no two of them have a common vertex. Let $S_{n, 2k-1}$ be the complete split graph, which is the join of a clique of size $2k-1$ with an independent set of size $n-2k+1$. In 1962, Erd\H{o}s and P\'{o}sa established the following edge-extremal result: for every graph $G$ of order $n$ which contains no $k$ independent cycles, where $k\geq2$ and $n\geq 24k$, we have $e(G)\leq (2k-1)(n-k),$ with equality if and only if $G\cong S_{n,2k-1}.$ In this paper, we prove a spectral version of Erd\H{o}s-P\'{o}sa Theorem. Let $k\geq1$ and $n\geq \frac{16(2k-1)}{\lambda^{2}}$ with $\lambda=\frac1{120k^2}$. If $G$ is a graph of order $n$ which contains no $k$ independent cycles, then $\rho(G)\leq \rho(S_{n,2k-1}),$ the equality holds if and only if $G\cong S_{n,2k-1}.$ This is a joint work with Mingqing Zhai.