学术报告-王鹏

学术报告


题      目: On Willmore Stability of minimal surfaces in  spheres


报  告  人:王鹏 教授(福建师范大学) (邀请人:魏国新 )

                                


时      间:2022年11月29日(周二)下午14:30-15:30


腾 讯 会 议:113-321-468


报告人简介:

       王鹏,福建师范大学数学与统计学院教授,闽江学者特聘教授,博士生导师;研究方向为Willmore曲面和极小曲面;代表性成果包括WIillmore二维球面的分类、Willmore曲面的可积系统刻画等,相关工作发表在JDG、Adv. Math.等期刊上。


摘      要:

       Minimal surfaces in spheres are important class of Willmore surfaces in spheres. In particular,  special minimal surfaces are conjectured to minimize Willmore energy with fixed topology, which is an important topic in global differential geometry. For instance, the generalized Willmore conjecture states that the Lawson minimal surfaces \xi_{g,1} minimize the Willmore energy among all closed surfaces in spheres with genus g. When g=1, this goes back the famous Willmore conjecture which was proved by Marques and Neves for tori in 3-sphere. In this talk we will discuss the Willmore stability of minimal surfaces in spheres. In particular, we will show that the Lawson minimal surfaces \xi_{g,1} are Willmore stable in S^3. This is a joint with Prof. Kusner.