学术报告
题 目: Frobenius problem associated with the number of solutions
报 告 人:TAKAO KOMATSU 教授 (邀请人:袁平之 )
浙江理工大学
时 间:3月30日 16:00-17:00
地 点:数科院东楼401
报告人简介:
TAKAO KOMATSU教授是浙江理工大学特聘教授。他在数论和组合方面的许多问题都有独到的见解,已发表论文210多篇。他是组合恒等式方面国际上著名专家。
摘 要:
Consider the number d(n;a_1,\dots,a_k) of non-negative integer solutions (x_1,\dots,x_k) of the linear diophantine equation n=a_1 x_1+\dots+a_k x_k, where a_1,\dots,a_k are positive integers. For a non-negative integer p, let S_p be the set of all n's such that d(n;a_1,\dots,a_k)>p. Then the set N_0\S_p is finite if and only if gcd(a_1,\dots,a_k)=1. The largest element and the cardinality of N_0\S_p are called the p-Frobenius number and the p-genus (p-Sylvester number), respectively. When p=0, the study on S=S_0 with the (0-)Frobenius number and the (0-)genus is known as the famous linear diophantine problem of Frobenius. In this talk, these backgrounds, tools and recent results for p>0 are given.