学术报告
题 目: An extremal problem on digraphs
报 告 人:黄泽军 教授 (邀请人:尤利华 )
深圳大学
时 间:4月11日 16:30-18:30
腾 讯 会 议 号:797249852
报告人简介:
黄泽军,深圳大学副教授、博士生导师,研究兴趣包括图论和组合矩阵论。已在Discrete Math.、Linear Algebra Appl.、 SIAM J. Matrix Anal. Appl. 等期刊发表论文30余篇,担任学术期刊Electronic Journal of Linear Algebra 编委,2019年入选深圳市高层次专业人才。
摘 要:
Let $n$ and $k$ be integers larger than or equal to 2. Let $D$ be a simple digraph on $n$ vertices such that $D$ does not contain two distinct walks of length $k$ with the same initial vertex and the same terminal vertex. What is the maximum size of $D$? This problem is equivalent to the following: what is the maximum number of ones in an $n\times n$ matrix $A$ such that both $A$ and $A^k$ are 0-1 matrices? In this talk, we will present the solution to this problem.
This talk is based on joint work with Zhenhua Lyu, Pu Qiao and Xingzhi Zhan.