学术报告
题 目: Clarkson-McLeod solutions of the fourth Painlev\'e equation: Asymptotics and applications
报 告 人:赵育求 教授 (邀请人:黄志波 )
中山大学
时 间:5月9日 16:00-17:00
地 点:数科院东楼401
报告人简介:
赵育求,中山大学数学学院教授,博士生导师。研究方向为复分析与渐近分析。目前主要研究兴趣包括:Riemann-Hilbert方法及其应用,随机矩阵及其它数学物理问题,特殊函数与Painleve方程。在Constr. Approx., Comm. Math. Phys., Physica D, Proc. AMS,
Nonlinearity, Sci. China Math.等刊物发表论文60篇。
摘 要:
Using the Deift-Zhou nonlinear steepest descent method, we derive the asymptotic behaviors for Clarkson-McLeod solutions of the fourth Painlev\'e equation at the negative infinity. This completes a proof of Clarkson and McLeod's conjecture on the asymptotics of this family of solutions. As applications, the total integrals of the Clarkson-McLeod solutions and the asymptotic approximations of the $\sigma$-form of this family of solutions are also derived.