学术报告
题 目:Sine transform based preconditioners for fractional diffusion inverse source problems
报 告 人:庞宏奎 教授 (邀请人:骆其伦 )
江苏师范大学
时 间:6月26日 11:00-12:00
地 点:数科院西楼111报告厅
报告人简介:
庞宏奎,江苏师范大学数学与统计学院教授,硕士生导师,2011年毕业于澳门大学数学系,获理学博士学位,主要研究方向为数值代数、科学与工程计算。主持国家自然科学基金面上项目、国家自然科学基金青年项目、江苏省自然科学基金面上项目等省部级以上课题5项;在SIAM J. Sci. Comput.、SIAM J. Matrix Anal. Appl.、J. Sci. Comput.、J. Comput. Phys.、Numer. Linear Algebra Appl.、Numer. Algor.、Linear Algebra Appl.等学术期刊上发表论文多篇;在高等教育出版社出版译著1部。
摘 要:
We investigate an inverse problem with quasi-boundary value regularization for recovering a source term of space-time fractional diffusion equations from the final observation. A sine transform based preconditioner is established for the discrete linear systems arising from the finite difference discretization of the regularized well-posed problem. According to the multilevel $\tau$-structure and 2-by-2 block form, the proposed preconditioner can be inverted efficiently by the fast sine transform and fast Fourier transform. Theoretically, we show that except for a number of outliners, the eigenvalues of the preconditioned matrix are located within a rectangular domain which is uniformly bounded away from zero. Numerical experiments are performed to demonstrate the effectiveness of the proposed preconditioner.