学术报告
题 目:High Dimensional Data Completion
报 告 人:吴国宝(Michael K. Ng) 教授 (邀请人:陈小山 )
香港大学
时 间:8月15日 10:00-11:00
地 点:数科院东楼401
报告人简介:
香港大学数学系讲座教授 (chair professor),美国工业与应用数学学会会士,冯康科学计算奖得主。1990年毕业于香港大学数学系,1992年获香港大学硕士学位,1995年获香港中文大学博士学位。研究方向包括科学计算、图像与视觉处理、数据挖掘、生物信息、人工智能与机器学习等。先后担任一些知名期刊的主编和副主编,包括SIAM Journal on Imaging Sciences,SIAM Journal on Scientific Computing,Journal of Scientific Computing,Journal of Computational and Applied Mathematics等。发表学术论文700多篇,著作多部,论著引用次数多达2万多次。
摘 要:
In recent years, high dimensional data completion has been extensively studied and analyzed, which can be applied to many data science applications such as recommendation, image recovery and one-bit data statistical estimation. In this talk, we present several variants of data completion models and their applications using linear algebra techniques. We provide theoretical insight to create a rigorous scientific basis for solving such data completion problems. Numerical examples are also given to demonstrate the usefulness of these models.