学术报告-赵文彬


学术报告


题      目:Nonlinear stability of entropy waves for the Euler equations


报  告  人:赵文彬  博士  (邀请人:袁源 )

                                    北京大学


时      间:10月19日  10:00-11:00


#腾讯会议:951-276-851   会议密码:231018

报告人简介:

        赵文彬,北京大学数学科学学院访问助理教授,2019年于香港城市大学获得博士学位。一直从事于流体力学(包括牛顿流体,弹性流体,磁流体,粒子传输系统等)的数学理论的研究,包括这些双曲型或者抛物双曲型混合型方程组的适定性、解的长时间性态、自由边界问题等,成果发表在Arch. Rational Mech. Anal., J. Differential Equations 等期刊。


摘      要:

       In this talk, we consider a special class of the contact discontinuity in the full compressible Euler equations, namely the entropy wave, where the velocity is continuous across the interface while the density and the entropy can have jumps. By deriving the evolution equation of the interface in the Eulerian coordinates, we relate the Taylor sign condition to the hyperbolicity of this evolution equation, which yields a stability condition for the entropy waves. With the optimal regularity estimates of the interface, we can derive the a priori estimates without loss of regularity. This gives a rigorous result on the nonlinear stability of the entropy waves.

        

         欢迎所有相关方向老师和研究生参加。