学术报告-韩道志

学术报告


题      目:A quasi-incompressible model for two-phase flows in porous media


报  告  人:韩道志  助理教授  (邀请人:李进开 )

                                   美国纽约州立大学水牛城分校


时      间:1月8日  09:00-10:00


地     点:数科院东楼401


报告人简介:

        韩道志,美国纽约州立大学水牛城分校助理教授。主要研究方向为流体力学中的非线性偏微分方程,以及相关的数值计算和分析。 主持美国国家自然科学基金项目两项。 在 Journal of Differential Equations, Journal of Computational Physics, Numerische Mathematik,SIAM Journal on Applied Dynamical Systems,  SIAM Journal on Numerical Analysis 等刊物发表论文数篇。


摘      要:

       Two-phase flows in porous media is known as the Muskat problem. The Muskat problem can be ill-posed. In this talk we introduce a quasi-incompressible Cahn-Hilliard-Darcy model as a relaxation of the Muskat problem. We show global existence of weak solution to the model. We then present a high order accurate bound-preserving and unconditionally stable numerical method for solving the equations. The talk is based on works joint with Yali Gao and Xiaoming Wang.

     

        欢迎老师、同学们参加、交流!