学术报告
题 目:Spectral extrema of graphs with bounded clique number and matching number
报 告 人:侯新民 教授 (邀请人:尤利华 )
中国科学技术大学
时 间:1月11日 16:00-17:00
腾讯会议:946-558-145 会议密码:0238
报告人简介:
侯新民,中国科学技术大学 教授,博士生导师。2002年博士毕业于大连理工大学。2009到2010在西弗吉尼亚大学学术访问,2013到2014在佐治亚理工大学学术访问。研究领域包括结构图论、极值图论及图论应用,已发表学术论文70余篇,主持完成国家自然科学基金4项,省部级项目2项,参与科技部重点专项2项。
摘 要:
For a set of graphs $\mathcal{F}$, let $\ex(n,\mathcal{F})$ and $\spex(n,\mathcal{F})$ denote the maximum number of edges and the maximum spectral radius of an $n$-vertex $\mathcal{F}$-free graph, respectively. Nikiforov ({\em LAA}, 2007) gave the spectral version of the Tur\'an Theorem by showing that $\spex(n, K_{k+1})=\lambda (T_{k}(n))$, where $T_k(n)$ is the $k$-partite Tur\'an graph on $n$ vertices. In the same year, Feng, Yu and Zhang ({\em LAA}) determined the exact value of $\spex(n, M_{s+1})$, where $M_{s+1}$ is a matching with $s+1$ edges.
Recently, Alon and Frankl~(arXiv2210.15076) gave the exact value of $\ex(n,\{K_{k+1},M_{s+1}\})$. In this talk, we give the spectral version of the result of Alon and Frankl by determining the exact value of $\spex(n,\{K_{k+1},M_{s+1}\})$ when $n$ is large.
欢迎老师、同学们参加、交流!