学术报告
题 目:Incompressible limit of three-dimensional isentropic compressible Navier-Stokes equations with discontinuous initial data
报 告 人:吴国春 教授 (邀请人:王勇 )
华侨大学
时 间:3月28日 14:30-15:30
地 点:数科院西楼111报告厅
报告人简介:
吴国春,博士,现为华侨大学数学科学学院副教授。本硕博连读于厦门大学数学科学学院,曾在中国科学院数学与系统科学研究院做两年博士后。主要从事流体力学中的偏微分方程数学理论的研究,已在Math. Ann.、SIAM J. Math. Anal.、J. Lond. Math. Soc.、J. Funct. Anal.、Nonlinearity和中国科学(英文版)等国内外权威期刊发表论文40多篇,主持国家自然科学基金青年项目1项和参与国家自然科学基金面上项目2项。
摘 要:
We consider the global weak solutions to the Cauchy problem of isentropic compressible Navier-Stokes equations in R^3 with bounded initial density that are of small energy but possibly large oscillations with non-vacuum constant state as far field. These solutions converge globally in time to a global weak solution of the inhomogeneous incompressible Navier-Stokes equations as the bulk viscosity goes to infinity. This result generalizes Danchin-Mucha's works (Adv. Math. 320: 904-925, 2017 and Comm. Pure Appl. Math. 76: 3437-3492, 2023) on the incompressible limit for strong solutions to weak solutions that have discontinuous density along surfaces. Some new techniques based on the effective viscous flux are developed in order to obtain the uniform a priori estimates.
欢迎老师、同学们参加、交流!