学术报告
题 目:Solutions of a class of matrix Riccati inequalities
报 告 人:徐洪国 教授 (邀请人:陈小山 )
美国Kansas大学
时 间:5月24日 09:30-10:30
ZOOM会议:964 5290 9618 密码:2405
报告人简介:
徐洪国教授主要从事数值代数研究工作.博士毕业于复旦大学,师从蒋尔雄教授,博士毕业后获洪堡基金资助,获得Householder奖.现美国Kansas大学任教。在控制论、结构矩阵(Hamilton矩阵与Symplectic矩阵)、奇异值分解和极分解等数值代数各个领域做了许多很好科研工作.在期刊《Numerishe Mathematik》,《SIAM J Matrix Anal Appl》,《BIT Numer Math》,《Mathematics of Computation》和《Automatic》等发表论文40多篇.
摘 要:
We show how invariant subspaces will change when a matrix with a
single eigenvalue is perturbed. We focus on the case when an invariant
subspace corresponds to the eigenvalues perturbed from those associated
with the same order Jordan blocks. We characterize the perturbations in
terms of fractional orders for the blocks of a matrix that defines an
invariant subspace. We also provide explicit formulas for the
coefficient matrices associated with the zero and first fractional
orders.
欢迎老师、同学们参加、交流!