勷勤数学•专家报告-王术

勷勤数学•专家报告


题      目:The Initial Value Problem for the Equations of Motion of Fractional Compressible Viscous Fluid


报  告  人:王术   教授  (邀请人:李进开 )

                                    北京工业大学数学统计学与力学学院


时      间:6月9日  15:00-16:00


地     点:数学院西楼111报告厅


报告人简介:

       王术,教授,博士生导师。现为北京工业大学二级教授,北京工业大学数学一级学科博士学位授权点责任教授,数学统计学与力学学院学术委员会主任。曾任中国数学会理事、北京工业大学应用数理学院院长等职务,曾入选教育部新世纪优秀人才、北京市长城学者,2016年获得国务院政府特殊津贴。1990年河南大学本科毕业,1993年北京理工大学硕士研究生毕业,1998年南京大学博士研究生毕业。曾在中科院数学所和奥地利维也纳大学做博士后,曾在美国加州理工学院做高级访问学者,曾在法国Blaise Pascal大学做访问教授。主要研究:偏微分方程及其应用。现主持或曾主持国家自然科学基金8项(含重点项目1项),独立获得北京市科学技术奖二等奖1项,出版著作3部,在《Adv. In Math.》《ARMA》《SIAM J Math Anal》《CPDE》《J. Diff. Eqns》等杂志发表SCI收录学术论文100余篇。


摘      要:

       In this talk we consider the initial value problem to the fractional compressible isentropic generalized Navier-Stokes equations for viscous fluids with one Levy diffusion process in which the viscosity term appeared in the fluid equations is described by the nonlocal fractional Laplace operator. We give one detailed spectrum analysis on a linearized operator and the decay law in time of the solution semigroup for the linearized fractional compressible isentropic generalized Navier-Stokes equations around a constant state by the Fourier analysis technique, which is shown that the order of the fractional derivatives plays a key role in the analysis so that the spectrum structure involved here is more complex than that of the classical compressible Navier-Stokes system. Based on this and the elaborate energy method, the global-in-time existence and one optimal decay rate in time of the smooth solution are obtained under the assumption that the initial data are given in a small neighborhood of a constant state.


          欢迎老师、同学们参加、交流!