勷勤数学•专家报告-陈少林

勷勤数学•专家报告


题      目:Hardy-Littlewood type Theorems and a Hopf type lemma


报  告  人:陈少林   教授  (邀请人:黄志波 )

                                   衡阳师范学院


时      间:6月21日  16:00-17:00


地     点:数学院东楼401


报告人简介:

       陈少林,教授,湖南省杰出青年基金获得者,“智能信息处理与应用”湖南省重点实验室常务副主任。曾在印度马德拉斯理工学院、印度拉马努金数学研究所、芬兰阿尔托大学、芬兰赫尔辛基大学和芬兰图尔库大学做访问学者。近几年指导学生参加全国大学生数学竞赛(数学专业组)获全国二等奖和省级一等奖共20余人,曾获湖南省大学生数学竞赛优秀指导老师奖。研究兴趣主要是几何函数理论。已在《Sci. China, Math.》《Indiana Univ. Math. J.》《J. Func. Anal.》《J. Anal.Math.》《Math.Z.》《Isr. J. Math.》《J.Geom.Anal.》等国内外数学杂志发表学术论文多篇。主持国家自然科学基金项目3项。


摘      要:

       The main aim of this talk is to investigate Hardy-Littlewood type Theorems and a Hopf type lemma on functions induced by a differential operator.We first  prove more general Hardy-Littlewood type theorems for the Dirichlet solution of a differential operator which depends on alpha in (-1, infty) over the unit ball B^n of R^n with n greater than 1, related to the Lipschitz type space defined by a majorant which satisfies some assumption. We find that the case  alpha in (0, infty) is completely different from the case alpha=0 due to Dyakonov ([Adv. Math., 187(2004),146-172]). Then a more general Hopf type lemma for the Dirichlet solution of a differential operator will also be established in the case alpha in (n-2, infty).


          欢迎老师、同学们参加、交流!