勷勤数学•专家报告
题 目:Legendrian mean curvature flow in \eta-Einstein Sasakian manifolds
报 告 人:韩英波 教授 (邀请人:姚泽科)
信阳师范大学
时 间:10月27日 10:00-11:00
地 点:数科院西楼二楼会议室
报告人简介:
韩英波,信阳师范大学教授、博士生导师。2007年7月于复旦大学数学科学学院获理学博士学位,2007.07-2009.12于东南大学数学系工作,2009年12月调入信阳师范大学数学与统计学院工作至今, 2016.12-2017.12于美国俄克拉荷马大学数学系学术访问。主要从事CR几何分析研究。主持完成3项国家自然科学基金项目,其中面上项目1项。在国内外重要学术期刊Journal für reine und angewandte Mathematik(Crelle’s Journal),The Journal of Geometric Analysis, International Mathematical Research Notices,Calculus of Variations and Partial Differential Equations等发表学术论文数十篇。
摘 要:
Recently, there are a great deal of work done which connects the Legendrian isotopic problem with contact invariants. The isotopic problem of Legendre curve in a contact 3-manifold was studies via the Legendrian curve shortening flow which was introduced and studied by K. Smoczyk. On the other hand, in the SYZ Conjecture, one can model a special Lagrangian singularity locally as the special Lagrangian cones in C^3 . This can be characterized by its link which is a minimal Legendrian surface in the 5-sphere. In this talk, we will focus on the existence of the long-time solution and asymptotic convergnce along the Legendrian mean curvature flow in higher dimensional \eta-Einstein Sasakian (2n + 1)-manifolds under the suitable stability condition due to the Thomas-Yau conjecture. This is a joint work with Shu-Cheng Chang and Chin-Tung Wu.
欢迎老师、同学们参加、交流!