勷勤数学•杰出学者报告-辛周平

勷勤数学•杰出学者报告


题      目:On the Prandtl’s theory for steady sink Type


报  告  人:辛周平  教授  (邀请人:李进开)

                                 香港中文大学


时      间:11月11日  16:10-17:10


地     点:数科院西楼111报告厅


报告人简介:

         辛周平,国际数学家大会45分钟报告人,教育部长江讲座教授,曾获得世界华人数学家大会最高奖--“晨兴数学金奖”,现任香港中文大学蒙民伟数学讲座教授、数学科学研究所常务所长。辛教授是偏微分方程的理论分析、数值计算及其应用,和非线性波、数学物理、流体力学等领域的著名专家,在线性和非线性波的渐近稳定性、粘性消失极限、边界层理论、高维激波理论、松弛格式和涡点方法和高维Navier-Stokes方程等方面做出了许多原创性的实质贡献。担任《Methods Appl. Anal.》主编、《J. Math. Phys.》、《Math. Models Methods Appl. Sci.》副主编,担任《Sci. China Math.》和《Math. Models Methods Appl. Sci.》在内的等十多个重要学术期刊的编委。


摘      要:

       In this talk, I will present some results on the large Reynolds number limits and asymptotic behaviors of solutions to the steady incompressible Navier-Stokes equations in two-dimensional infinitely long convergent nozzles. The main results show that the Prandtl's laminar boundary layer theory can be rigorously established and the sink-type Euler flow superposed with a self-similar Prandtl's boundary layer flow is shown to be uniformly structurally stable as long as the viscous flow has a given negative mass flux and the boundaries of the nozzle satisfy a curvature decreasing condition. Furthermore, the asymptotic behaviors of the solutions at both the vertex and infinity can be determined uniquely which plays a key role in the stability analysis. Some of key ideas in the theory will be discussed. This talk is based on a joint work with Dr. Chen Gao.


          欢迎老师、同学们参加、交流!