专家报告-赵显贵

专家报告


题      目:Gelfand-Kirillov dimension of operads and its applications


报  告  人:赵显贵   副教授  (邀请人:张泽锐)

                                   惠州学院


时      间:12月6日  17:00-18:00


地     点:数科院西楼111报告厅


报告人简介:

         赵显贵博士,惠州学院数学与统计学院副院长、副教授,先后毕业于华南师范大学和加拿大曼尼托巴大学,曾任华盛顿大学和南方科技大学访问学者。主要研究方向为代数学。主持或参与国家级、省级科研和教研项目10余项,在《SCIENCE CHINA Mathematics》《Israel Journal of Mathematics》《Indiana University Mathematics Journal》等国内外学术期刊发表论文20余篇。主讲高等代数(国家级一流本科课程)、近世代数(省级一流本科课程)、数学文化等课程。


摘      要:

       In this talk, we study the Gelfand-Kirillov dimension (GK-dimension) of operads and its applications. In particular, analogues of Bergman’s gap theorem are proved for nonsymmetric and symmetric operads, namely, no finitely generated locally finite nonsymmetric (resp., symmetric) operad has GK-dimension strictly between 1 and 2. On the contrary, for an arbitrary real number r\geq 1, there exist shuffle operads of GK-dimension r. This is a joint work with Yu Li, Zihao Qi, Yongjun Xu, James Zhang, and Zerui Zhang.


          欢迎老师、同学们参加、交流!