勷勤数学•领军学者报告
题 目:Generalized variational framework with minimax optimization for parametric blind deconvolution
报 告 人:韩德仁 教授 (邀请人:陈艳男)
北京航空航天大学
时 间:12月15日 09:30-10:30
地 点:数科院西楼二楼会议室
报告人简介:
韩德仁,教授,博士生导师,北京航空航天大学数学科学学院院长、教育部数学类专业教指委秘书长。从事大规模优化、变分不等式问题及其应用研究工作,发表多篇学术论文。曾获中国运筹学会青年科技奖,江苏省科学技术奖等奖项;主持国家自然科学基金重点项目、杰出青年基金项目等多项项目。担任中国运筹学会副理事长;《数值计算与计算机应用》、《Journal of the Operations Research Society of China》、《Journal of Global Optimization》、《Asia-Pacific Journal of Operational Research》编委。
摘 要:
Blind deconvolution (BD), which aims to separate unknown colvolved signals, is a fundamental problem in signal processing. Due to the ill-posedness and underdetermination of the convolution system, it is a challenging nonlinear inverse problem. This talk presents the algorithmic studies of parametric BD, which is typically applied to recover images from ad hoc optical modalities. We propose a generalized variational framework for parametric BD with various priors and potential functions. By using the conjugate theory in convex analysis, the framework can be cast into a nonlinear saddle point problem. We employ the recent advances in minimax optimization to solve the parametric BD by the nonlinear primal-dual hybrid gradient method, with all subproblems admitting closed-form solutions. Numerical simulations on synthetic and real datasets demonstrate the compelling performance of the minimax optimization approach for solving parametric BD.
欢迎老师、同学们参加、交流!