勷勤数学•专家报告
题 目:Boundary-layer problem for the Keller-Segel Model
报 告 人:王治安 教授 (邀请人:李进开)
香港理工大学
时 间:1月12日 17:00-18:00
地 点:数科院西楼111报告厅
报告人简介:
王治安,香港理工大学教授,华中师大本科硕士。加拿大艾伯塔大学应用数学博士,美国明尼苏达大学应用数学所博士后。主要从事与生物数学相关的偏微分方程研究,兴趣包括生物和生态数学中动力学行为与运动的建模与分析。目前担任J. Math. Biol., DCDS-B, Frontiers in Ecology and Evolution杂志编委。多次获得香港研究资助局基金资助和2022国家基金委-香港研究资助局联合研究基金资助, 获得过2013 JMAA Ames Award 和2019香港数学会青年学者奖。
摘 要:
In this talk, we shall discuss the boundary layer problem of the singular Keller-Segel model with physical boundary conditions in any dimensions. First, we obtain the existence and uniqueness of boundary-layer solution to the steady-state problem and identify the boundary-layer profile and thickness near the boundary. Then we find the asymptotic expansion of boundary-layer profile in terms of the radius for the radially symmetric domain, which can assert how the boundary curvature affects the boundary-layer thickness. Finally, we establish the nonlinear stability of the unique boundary-layer steady state solution with ex- ponential convergence rate for the radially symmetric domain.
欢迎老师、同学们参加、交流!