勷勤数学•专家报告-王治安

勷勤数学•专家报告


题      目:Boundary-layer problem for the Keller-Segel Model


报  告  人:王治安 教授  (邀请人:李进开)

                                              香港理工大学


时      间:1月12日  17:00-18:00


地     点:数科院西楼111报告厅


报告人简介:

           王治安,香港理工大学教授,华中师大本科硕士。加拿大艾伯塔大学应用数学博士,美国明尼苏达大学应用数学所博士后。主要从事与生物数学相关的偏微分方程研究,兴趣包括生物和生态数学中动力学行为与运动的建模与分析。目前担任J. Math. Biol., DCDS-B, Frontiers in Ecology and Evolution杂志编委。多次获得香港研究资助局基金资助和2022国家基金委-香港研究资助局联合研究基金资助, 获得过2013 JMAA Ames Award 和2019香港数学会青年学者奖。


摘      要:

       In this talk, we shall discuss the boundary layer problem of the singular Keller-Segel model with physical boundary conditions in any dimensions. First, we obtain the existence and uniqueness of boundary-layer solution to the steady-state problem and identify the boundary-layer profile and thickness near the boundary. Then we find the asymptotic expansion of boundary-layer profile in terms of the radius for the radially symmetric domain, which can assert how the boundary curvature affects the boundary-layer thickness. Finally, we establish the nonlinear stability of the unique boundary-layer steady state solution with ex- ponential convergence rate for the radially symmetric domain.

          

          欢迎老师、同学们参加、交流!