勷勤数学•专家报告
题 目:Several structure-preserving schemes for the Q-tensor flow
报 告 人:李晓丽 教授 (邀请人:钟柳强)
山东大学
时 间:4月14日 14:30-15:30
地 点:数科院西楼二楼会议室
报告人简介:
李晓丽,山东大学教授,博士生导师,国家高层次青年人才入选者,山东省杰青,山东大学杰出中青年学者。担任中国数学会计算数学分会常务理事,CSIAM油水资源专委会秘书长。主要研究领域为偏微分方程数值解与计算流体力学。在SIAM J. Numer. Anal., SIAM J. Sci. Comput., Math. Comp., J. Fluid Mech., Math. Mod. Meth. Appl. Sci.及J Comput. Phys.等计算数学高水平期刊上发表学术论文多篇。主持国家自然科学基金面上项目、重点项目子课题、青年项目等多个国家及省部级项目。
摘 要:
In this talk we present two efficient fully-discrete schemes for Q-tensor flow by using the first- and second-order stabilized exponential scalar auxiliary variable approach in time and the finite difference method for spatial discretization. The modified discrete energy dissipation laws are unconditionally satisfied for both two constructed schemes. A particular feature is that, for two-dimensional (2D) and a kind of three-dimensional (3D) Q-tensor flows, the unconditional maximum-bound-principle (MBP) preservation of the constructed first-order scheme is successfully established, and the proposed second-order scheme preserves the discrete MBP property with a mild restriction on the time-step sizes. Furthermore, we rigorously derive the corresponding error estimates for the fully-discrete second-order schemes by using the built-in stability results. Finally, various numerical examples validating the theoretical results, such as the orientation of liquid crystal in 2D and 3D, are presented for the constructed schemes.
欢迎老师、同学们参加、交流!