勷勤数学•专家报告
题 目:BOUNDEDNESS OF NEW TYPE FOURIER INTEGRAL OPERATORS WITH PRODUCT STRUCTURE
报 告 人:谭超强 副教授 (邀请人:韩彦昌)
汕头大学
时 间:5月5日 08:30-09:30
地 点:数科院东楼507
报告人简介:
主要研究函数的Fourier变换以及相关问题。主要内容涵盖了算子插值方法、极大函数方法、球调和函数理论、位势理论、Littlewood-Paley理论、奇异积分以及一般可微函数空间等。在J. Func. Anal.,ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE,Math.Res.Lett.等杂志发表20多篇文章。
摘 要:
We investigate a class of Fourier integral operators with weakened symbols,which satisfy a multi-parameter differential inequality in R^n . We establish that these opera-tors retain the classical Lp boundedness and the H1 to L1 boundedness. Notably, the Hardy space considered here is the raditional single-parameter Hardy space rather than a product Hardy space.
欢迎老师、同学们参加、交流!