勷勤数学•专家报告-谭超强

勷勤数学•专家报告


题      目:BOUNDEDNESS OF NEW TYPE FOURIER INTEGRAL OPERATORS WITH PRODUCT STRUCTURE


报  告  人:谭超强 副教授  (邀请人:韩彦昌)

                                   汕头大学


时      间:5月5日  08:30-09:30


地     点:数科院东楼507


报告人简介:

       主要研究函数的Fourier变换以及相关问题。主要内容涵盖了算子插值方法、极大函数方法、球调和函数理论、位势理论、Littlewood-Paley理论、奇异积分以及一般可微函数空间等。在J. Func. Anal.,ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE,Math.Res.Lett.等杂志发表20多篇文章。


摘      要:

      We investigate a class of Fourier integral operators with weakened symbols,which satisfy a multi-parameter differential inequality in R^n . We establish that these opera-tors retain the classical Lp boundedness and the H1 to L1 boundedness. Notably, the Hardy space considered here is the raditional single-parameter Hardy space rather than a product Hardy space.


          欢迎老师、同学们参加、交流!