勷勤数学•专家报告-吴朔男

勷勤数学•专家报告


题      目:Extending Morley-Wang-Xu elements beyond the $m \le n$ barrier


报  告  人:吴朔男 研究员  (邀请人:钟柳强)

                                   北京大学


时      间:5月16日  16:00-17:00


地     点:数科院西楼112教室


报告人简介:

       吴朔男分别于2009年和2014年在北京大学数学科学学院获得学士和博士学位,2014年至2018年在美国宾州州立大学进行博士后研究,2018年加入北京大学数学科学学院信息与计算科学系,现任长聘副教授/研究员。主要研究方向为偏微分方程数值解,研究内容包括:磁流体力学中的磁对流的稳定离散、非线性、高阶椭圆型方程的非协调有限元的构造和分析,空间分数阶问题的离散和快速求解器等。研究工作发表在Math. Comp., Numer. Math., SIAM J. Numer. Anal.等核心期刊上。曾获基金委优秀青年科学基金(2022)、第六届中 国工业与应用数学学会应用数学青年科技奖(2022)。


摘      要:

       The well-known Morley-Wang-Xu (MWX) elements provide a family of nonconforming finite element spaces for solving $2m$-th order elliptic problems on $n$-dimensional simplicial meshes, under the constraint $m \le n$. In a previous work, we extended this framework to the critical case $m = n+1$ by constructing nonconforming elements that maintain unisolvence and convergence through a careful matching between degrees of freedom and shape function spaces. This talk presents a further development of this line of research: a unified framework for constructing canonical nonconforming finite element spaces for any $m \ge 1$ and any $n \ge 1$. These spaces are defined through a recursive design principle and a multi-level structure that preserves the essential algebraic and geometric properties required for convergence. Our construction answers an open question in the design of nonconforming elements for high-order problems in arbitrary dimension.



          欢迎老师、同学们参加、交流!