勷勤数学•专家报告
题 目:Approximating the invariant measures of McKean-Vlasov processes
报 告 人:杜恺 副教授 (邀请人:杨舟)
复旦大学
时 间:5月19日 09:00-10:00
地 点:数科院西楼二楼会议室
报告人简介:
复旦大学上海数学中心长聘副教授、博士生导师,2011年获复旦大学博士学位,曾任职于苏黎世联邦理工学院(ETH)、澳大利亚Wollongong大学,2019年获聘上海市“东方学者”特聘教授,2022年入选国家优秀青年科学基金项目,主要研究方向包括随机分析、偏微分方程、最优控制、强化学习等,学术成果发表在PTRF,SICON,TAMS,JDE,SPA等国际权威期刊上。
摘 要:
This work reveals that the invariant probability measure of a McKean-Vlasov process can be approximated by the empirical measures of some processes including itself. These processes are described by distribution dependent or empirical measure dependent stochastic differential equations constructed from the equation for the McKean-Vlasov process. Convergence of empirical measures is characterized by upper bound estimates for their Wasserstein distance to the invariant measure.
欢迎老师、同学们参加、交流!