勷勤数学•专家报告
题 目:Advanced Numerical Methodologies for Fluid-Structure Interaction
报 告 人:孙澎涛 教授 (邀请人:钟柳强)
Iniversity of Nevada Las Vegas,UNLV
时 间:6月8日 11:00-12:00
地 点:数科院西楼二楼会议室
报告人简介:
孙澎涛博士,现任美国内华达大学拉斯维加斯分校Iniversity of Nevada Las Vegas,UNLV)数学系的终身正教授,博士生导师。997年在中国科学院数学研究所获博士学位。在2007年入职美国内华达大学(UNLV)之前,曾先后在国科学院、香港理工大学、美国宾夕法尼亚州立大学、加拿大西蒙弗雷泽大学担任博士后、副研究员、助理教授等职位。主要研究方向:偏微分方程数值解,有限元/有限体积方法的数值分析,自适应有限元方法,区域分解方法,相场方法,以及对流体动力学固体力学、流-固耦合动力学、燃料电池动力学、血液动力学、电流体动力学等多物理场问题的建莫、科学与工程计算的算法、分析、实现等研究。在著名的科学期刊上发表学论文100余篇。2008年以来的研究课题连续被美国国家科学基金会(NSF),西蒙斯基金会(Simons oundation)和内华达大学的教授研究奖励基金所资助。于2016年获得内华达学理学院颁发的杰出研究奖。
摘 要:
In this talk, I will present my resent research work on fluid-structure interaction (FSI) problems. The interaction of a flexible structure with a flowing fluid in which it is submersed or by which it is surrounded gives rise to a rich variety of physical phenomena with applications in many fields of engineering. Thus, finding accurate, efficient and robust ways to model and simulate both fluid and structure that are dynamically coupled together through moving interfaces has been always crucial to understand the phenomena of FSI. There are currently several major approaches for solving FSI problems that are classified by either the numerical treatment on interface conditions or the mesh conformity across moving interfaces. In my talk, I will briefly present five advanced numerical methodologies developed and analyzed in my research work of numerical FSI: (1) body-fitted mesh method; (2) body-unfitted mesh method; (3) meshfree/deep neural network method; (4) reduced order modeling method; and (5) phase field modeling method, where the monolithic approach is adopted for each technique to realistically implement the dynamic coupling between fluid and structure. In addition, numerical experiments of substantial FSI problems ranging from hydrodynamics (physics) to hemodynamics (physiology) will also be shown in this talk to illustrate that the presented well developed numerical methodologies can produce high-fidelity numerical results for realistic FSI problems in an efficient and accurate fashion.
欢迎老师、同学们参加、交流!