勷勤数学•专家报告
题 目:$H^{\frac{7/4}}$ ill-posedness of the compressible ideal MHD system in 2D
报 告 人:尹思露 副教授 (邀请人:罗天文)
杭州师范大学
时 间:6月20日 16:30-17:30
地 点:数科院西楼114
报告人简介:
尹思露,杭州师范大学副教授。博士毕业于复旦大学数学系,师从周忆教授。主要研究双曲型偏微分方程解的适定性及奇性理论。在Amer. J. Math、SIAM JMA、JDE等杂志发表多篇论文。
摘 要:
In this talk, we investigate the ill-posedness of the non-strictly hyperbolic compressible ideal MHD (IMHD) system in two dimensions, which exhibits multiple propagation speeds. For scalar quasilinear wave equation, Smith-Tataru showed its local well-posedness in $H^{\frac{11/4}+} \times H^{\frac{7/4}+}$. Here, we construct a counterexample to the local existence of low-regularity solutions to the IMHD system in the borderline space $H^{\frac{7/4}}$. Our proof is based on a coalition of a carefully designed algebraic approach and Christodoulou’s geometric approach. We give a complete description of solutions’ dynamics up to the earliest singular event, when a shock forms. This talk is based on a joint work with Xinliang An (NUS) and Haoyang Chen (NUS).
欢迎老师、同学们参加、交流!