勷勤数学•专家报告-徐洪国

勷勤数学•专家报告


题      目: Invariant subspace perturbations for defective eigenvalues of certain structured matrices



报  告  人:徐洪国 教授  (邀请人:陈小山)

                                              美国Kansas大学


时      间:6月26日  16:30-17:30


地     点:数科院东楼401


报告人简介:

         徐洪国教授主要从事数值代数研究工作.博士毕业于复旦大学,师从蒋尔雄教授,博士毕业后获洪堡基金资助,获得Householder奖. 现美国Kansas大学任教。在控制论、结构矩阵、奇异值分解和极分解等数值代数各个领域做了许多很好科研成果. 在知名期刊《Numerishe Mathematik》,《SIAM J Matrix Anal Appl》,《BIT Numer Math》,《Mathematics of Computation》和《Automatic》等发表论文.



摘      要:

       For structured matrices, their eigenvalues and invariant subspaces have special symmetric patterns. These symmetric patterns play a fundamental role in applications. We consider two types of structured matrices, the matrices that are Hermitian with respect to an indefinite inner product and the Hamiltonian matrices. Using the recently developed general perturbation theory,we provide structured fractional perturbation results for the invariant subspaces corresponding to the eigenvalues that are perturbed from a single defective eigenvalue of the same first fractional order. Other related results are also provided.



          欢迎老师、同学们参加、交流!