勷勤数学•专家报告
题 目:Global well-posedness and optimal decay rates for a generic compressible two-fluid model
报 告 人:吴国春 教授 (邀请人:王勇)
厦门理工学院
时 间:7月23日 16:30-17:30
地 点:数科院西楼111报告厅
报告人简介:
吴国春现为厦门理工学院数学与统计学院副教授,硕士生导师。研究方向为流体力学中的偏微分方程数学理论,在Mathematische Annalen, J. Lond. Math. Soc., SIAM J. Math. Anal., J. Funct. Anal., Sci. China Math.,等国际重要学术期刊发表论文40余篇,曾主持国家自然科学基金青年项目1项,参与国家自然科学基金面上项目2项。
摘 要:
We investigate a generic compressible two-fluid model with unequal pressures in R3. Under the help of the “effective viscous flux”, we successfully remove the technical smallness condition (see Evje-Wang-Wen [Arch Rational Mech Anal 221:1285-1316, 2016]) to establish the global existence of strong solutions for initial perturbations near equilibrium in H2. Furthermore, when initial perturbations additionally belong to L1, we obtain optimal decay rates for the solution and its spatial derivatives (from first to second order) using high-low frequency decomposition and time-weighted energy methods.