勷勤数学•专家报告
题 目:Principal symbol calculus on contact manifold
报 告 人:Dmitriy Zanin 教授 (邀请人:范智杰)
University of New South Wales
时 间: 8月14日 11:00-12:00
地 点:数科院东楼506
报告人简介:
Dmitriy Zanin , Senior Lecturer, 工作于澳大利亚新南威尔士大学, 在Proc. London. Math.Soc., J. Reine Angew. Math., Amer. J. Math.等国际期刊发表学术论文100多篇,曾获得Australian Reseach Council的资助.
摘 要:
Principal symbol mapping on a Heisenberg group \mathbb{H}^d is a \ast-homomorphism from the C^{\ast}-algebra generated by M_f, f\in C_0(\mathbb{H}^d) and Heisenberg-Riesz transforms. Its co-domain is the minimal tensor product of C_0(\mathbb{H}^d) and the C^{\ast}-algebra generated by the Heisenberg-Riesz transforms.
A version of Connes trace formula for sub-Riemannian contact manifolds is presented as an application.
This is a joint work with Yuri Kordyukov and Fedor Sukochev [published in Lecture Notes in Mathematics]