勷勤数学•专家报告
题 目:On nodal solutions with a prescribed number of nodes for a Kirchhoff-type problem
报 告 人:张建军 教授 (邀请人:钟学秀)
重庆交通大学
时 间: 8月21日 11:30-12:30
地 点:数科院西楼二楼会议室
报告人简介:
张建军,重庆交通大学数学与统计学院教授,重庆市数学会副理事长,贵州大学和重庆交通大学博士生导师。2001年本科毕业于中国矿业大学数学系,2012年于清华大学数学科学系获博士学位,2018年获得意大利副教授国家资格认证,2020年入选重庆市高校中青年骨干教师,主持国家自然科学基金3项和意大利伦巴第研究员基金(Global ERC)1项。在非线性薛定谔方程的半经典状态和规范化解的研究等方面取得了一些结果,在JMPA,CPDE,SIAM, JLMS, CVPDE, JDE, Nonlinearity等刊物上发表多篇论文。
摘 要:
In this talk, we are concerned with the existence and asymptotic behavior of multiple radial sign-changing solutions with the nodal characterization for a Kirchhoff-type problem involving the nonlinearity in . By introducing a novel Nehari manifold for the auxiliary system of the equations, we show that, for any positive integer , the problem has a sign-changing solution changing signs exactly times. Furthermore, the energy of is strictly increasing in k, as well as some asymptotic behaviors of are obtained. Our result is a complement of [Deng Y, Peng S, Shuai W, J. Funct. Anal., 269(2015), 3500-3527], where the case was left open. This talk is based on a joint work with Haining Fan and Marco Squassina.
欢迎老师、同学们参加、交流!