勷勤数学•专家报告
题 目:The Cauchy problem for a parabolic p-Laplacian equation with combined nonlinearities
报 告 人:张正策 教授 (邀请人:潘洪京)
西安交通大学
时 间: 11月30日 14:30-15:30
地 点:数科院西楼111报告厅
报告人简介:
张正策, 西安交通大学数学与统计学院教授、博士生导师,主要从事非线性偏微分方程理论及应用研究,重点开展非线性抛物方程梯度爆破和自由边值问题的定性分析。在Sci. China Math., CVPDE, JDE, JDDE, JNS, SIAM J. Numer. Anal.等学术期刊发表九十余篇论文, 主持多项国家自然科学基金面上项目和省部级基金, 多次应邀参加AIMS和AMS Spring Section等国际学术会议并作报告。
摘 要:
In this talk, we consider the critical exponents for the homogeneous evolution p-Laplacian equation
$u_{t}-\Delta_{p}u=u^{m}+|\nabla u|^{q}$ and its inhomogeneous version
$u_{t}-\Delta_{p}u=u^{m}+|\nabla u|^{q}+h(x)$ in $\mathbb{R}^{N}\times\mathbb{R}^{+}$,
$u\geq0$, $u(x,0)=u_{0}(x)$ in $\mathbb{R}^{N}$,
where $N\geq1$, $p, m>1$ and $q>1$. We obtain a discontinuous critical exponent result for the homogeneous evolution p-Laplacian equation, which demonstrates the gradient term brings about a significant phenomenon of the critical exponent, changing from $m=p-1+p/N$ to $m=\infty$ as $q$ goes to the value $p-N/(N+1)$ from above. Meanwhile, we also investigate the inhomogeneous evolution p-Laplacian equation and get a different discontinuous critical exponent result. This is a joint work with Heqian Lu.
欢迎老师、同学们参加、交流!