勷勤数学•专家报告
题 目:Covers of the Integers by Residue Classes and their Extensions to Groups
报 告 人:孙智伟 教授 (邀请人:袁平之)
南京大学
时 间: 1月14日 15:30-16:30
地 点:数科院东楼401
报告人简介:
孙智伟,现为南京大学数学学院二级教授、博士生导师, 中国数学会组合与图论专业委员会副主任。其研究方向为数论与组合数学。
他获过多项荣誉与奖励,包括国务院政府特殊津贴、教育部首届青年教师奖、江苏省科技进步二等奖。他是国际性期刊《Frontiers in Number Theory and Combinatorics》的创刊主编。
他在数论与组合、代数的交叉领域有许多创新成果, 迄今已在《Trans. Amer. Math. Soc.》等数学期刊上发表了两百多篇学术论文, 还著有《数论与组合中的新猜想》、《Fibonacci数与Hilbert第十问题》等书。在限定未知数个数的整数环上Hilbert第十问题方面,他保持着世界最佳记录。他还提出了许多原创性数学猜想,引起了国际同行的广泛关注与研究。
摘 要:
A system A=\{a_s+n_s\Z\}_{s=1}^k of k residue classes is called a cover of Z
if any integer belongs to one of the k residue classes. This concept was introduced by P. Erd os in the 1950s. Erd os ever conjectured that A is a cover of Z whenever it covers $1,\ldots,2^k$.
In this talk we introduce some basic results on covers of $\Z$ as well as their elegant proofs.We will also talk about covers of groups by finitely many cosets, give a proof of the Neumann-Tomkinson theorem, and introduce progress on the Herzog-Schonheim conjecture and the speaker's disjoint cosets conjecture.
欢迎老师、同学们参加、交流!