勷勤数学•专家报告
题 目:Hyperbolic nonlinear Schrödinger equations and Boltzmann equations
报 告 人: 王玉昭 教授 (邀请人:李颖花)
大连理工大学
时 间: 1月15日 09:00-10:00
地 点:数科院东楼401
报告人简介:
王玉昭教授博士毕业于北京大学,长期从事偏微分方程理论研究。研究成果发表于 Advances in Mathematics、Communications in Mathematical Physics、Proceedings of the London Mathematical Society、Journal of Functional Analysis、Communications in Partial Differential Equations(CPDE)以及 SIAM Journal on Mathematical Analysis 等国际重要期刊。
摘 要:
Hyperbolic Schrödinger equations have attracted increasing attention in recent years due to their newly discovered connections with water waves and the Boltzmann equation. In this talk, we begin by exploring some of these connections. We then present some recent advances in the solution theory of hyperbolic nonlinear Schrödinger equations on partial periodic and periodic domains and Boltzmann equation on periodic domain. Specifically, we will discuss Strichartz estimates, which relate to the $l^2$ decoupling theory of non-positive Gaussian curvature surfaces, and well-posedness, which reduces bilinear Strichartz estimates.
欢迎老师、同学们参加、交流!